
Static, Width-Independent LP Solvers via

Black-box Regret Minimization

Ximing Li1 and Liv d’Aliberti2

1Operations Research and Financial Engineering, Princeton University
2Computer Science, Princeton University

December 12, 2024

Abstract

This note provides a brief introduction to algorithms based on Packing-
Covering Linear Programs (LPs) via Multiplicative Weight Updates (MWU),
as described in [4]. To the best of our knowledge, Bhattacharya et al.
introduce the first width-independent, near-linear-time LP solver whose
analysis is derived from a black-box application of the regret bound for
MWU. We begin by introducing and defining packing-covering dual linear
programs, width-independent solvers, and the MWU protocol. Next, we
restate the static, black-box Whack-a-Mole MWU algorithm for packing-
covering LPs, provide concrete examples to help readers understand the
MWU update, and outline a near-linear-time implementation. Following
this, we reformulate the MWU algorithm as an adversarial bandit problem
and establish theoretical guarantees for the Whack-a-Mole MWU algo-
rithm. Finally, in the fourth section, we give a width-independent bound
on running time. We conclude the note by briefly discussing the exten-
sion to the dynamic update implementation of the Whack-a-Mole MWU
algorithm.

1 Introduction

Set packing and covering problems are fundamental to a diverse set of fields,
including engineering, approximation theory, and economics. Moreover, ap-
proximation algorithms based on packing-covering principles are used to solve
problems in facility location-allocation problems, vehicle routing, crew schedul-
ing, switching circuit design, and capital investment decisions [3]. The covering
problem aims to minimize a non-negative cost function subject to non-negative
covering constraints. Conversely, the packing problem aims to maximize a non-
negative profit function subject to non-negative packing constraints [2]. The
problems can be mathematically represented as follows:

1



Covering LP: minx∈Rn
≥0

{
c⊤x | Ax ≥ b

}
,

Packing LP: maxy∈Rm
≥0

{
b⊤y | A⊤y ≤ c

}
.

(1)

Where matrix coefficients A ∈ Rm×n
≥0 , b ∈ Rm

≥0, c ∈ Rn
≥0 are all non-negative.

The Covering and Packing linear programs (LPs) are duals to each other with
the primal-dual optimum denoted as OPT. Since precisely solving the LP is
challenging, particularly for large and/or very wide matrices, we focus on com-
puting an approximate solutions efficiently.

Definition 1 (Approximate solution). For any ϵ > 0 and vector x ∈ Rn
≥0, we

call it as an ϵ-approximation for the Covering LP if Ax ≥ b and c⊤x ≤ (1 + ϵ)
OPT. Similarly, any vector y ∈ Rm

≥0 is called as an ϵ-approximation for the

Packing LP if A⊤y ≤ c and b⊤y ≥ OPT/(1 + ϵ).

1.1 Multiplicative Weight Update Framework

The Multiplicative Weight Update (MWU) framework is a widely adopted op-
timization method with diverse applications, including as an iterative solver for
Covering and Packing LPs. At a high level, MWU-based solvers for the Covering
and Packing LPs follows two approaches:

1. Dual-Update Approach: The dual solution y (corresponding to the
Packing LP) is updated additively, while the primal solution x (corre-
sponding to the covering LP) is maintained multiplicatively as an indicator
variable.

2. Primal-Update Approach: The primal solution x (corresponding to
the covering LP) is updated multiplicatively.

Width-Independent. In MWU-type algorithms, an important parameter is
the width, defined as λOPT , where λ represents the largest entry in the coeffi-
cient matrix. The running time of many existing MWU-based solvers depends
heavily upon the width λ. For instance, [7] achieves a time complexity of ap-

proximately Õ
(
N
(
λOPT

ϵ

)2)
, while [1], improves this bound to Õ

(
N λOPT

ϵ2

)
.

Furthermore, the latter work provides a theoretical guarantee for LP solvers
through a black-box application of the regret bound for MWU.

However, in practice, a large width λ leads to a slow convergence rate and ne-
cessitates a heavy computational load. This limitation has spurred interest in
the development of width-independent solvers [5, 8]. These fast algorithms en-
joy a Õ(N/poly(ϵ)) running time that is independent (or only log-dependent)
on λOPT. By removing the dependence upon width, fast width-independent
solvers offer a significant improvement in efficiency and scalability.

Black-Box Manner. Although the algorithms described above all build on
the same MWU framework, each requires a separate and fine-tuned analysis

2



resembling a proof of the regret bound of MWU. But can we achieve a width-
independent Packing-Covering LPs solver whose guarantee directly follows from
the regret bound of MWU in a blackbox manner? [4] provides a positive answer
to this question, which serves as the central focus of our note. We then extend
beyond the theoretical analysis of [4] by reformulating the problem as an ad-
versarial bandit learning scenario, and we use this formulation to carry out a
black-box MWU regret bound.

1.2 Organization

This note examines the Packing-Covering LP framework introduced by [4]. In
Section 2, we provide a detailed overview of the static whack-a-mole LP solver
based on the MWU method, supplemented with two detailed examples to illus-
trate the core idea. Section 3 discusses the connection between the algorithm as
the MWU policy update in an adversarial bandit learning scenario. Based on
this formulation, we establish a theoretic guarantee by a black-box application
of the MWU regret bound. Section 4 provides a width-independent running
time and explains the underlying rationale. Section 5 summarizes the note and
gives suggestions on future readings.

2 Algorithm Description

We begin by presenting the whack-a-mole MWU algorithm basic template in the
static setting. Then, to help readers understand, we include two examples of the
algorithm over small-scale packing-covering LP problems. We end the section
with a discussion on how to implement the algorithm in near linear time.

2.1 Static Whack-a-Mole MWU

Algorithm 1, described below, gives the most basic description of a solution to
the following problem statement for a static setting:

Problem Statement: Given a matrix C ∈ [0, λ]m×n where λ > 0, either re-
turn a vector x ∈ Rn

≥0 with 1Tx ≤ 1 +Θ(ϵ) and Cx ≥ (1−Θ(ϵ)) · 1 or return a

vector y ∈ Rm
≥0 with 1T y ≥ 1−Θ(ϵ) and CT y ≤ (1 + Θ(ϵ)) · 1.

Where we either return an approximately feasible solution to the covering LP
with objective ≤ 1 + Θ(ϵ) or return an approximately feasible solution to the
dual packing LP with objective ≥ 1 − Θ(ϵ). Note this problem is a special
case of the Packing-Covering LPs in (1) with A = C, b = 1m, and c = 1n, and
Appendix B shows that general Packing-Covering LPs can be reduced to this
special case.

The algorithm maintains a vector x̂ ∈ Rn
≥0, where x̂j denotes the weight as-

sociated with the variable j ∈ [n] from the covering LP and the normalized

3



Algorithm 1 Static Whack-a-Mole MWU Basic Template

Define T ← λln(n)
ϵ2 , and two vectors x̂, x1 ∈ Rn

≥0, where x̂
1 ← 1 and x1 ← x̂1

∥x̂∥1

for t = 1 to T do
if ∀i ∈ [m], (C · xt)i ≥ 1− ϵ then

Return (xt,NULL).
else

x̂t+1 ←WHACK(it, x̂
t).

xt+1 ← x̂t+1

∥x̂t+1∥1
.

Let yt ∈ ∆m be the vector where (yt)it = 1 and (yt)i = 0,∀i ∈
[m]\{it}.

end if
end for
y ← (1/T ) ·

∑T
t=1 y

t.
Return (NULL, y).

Algorithm 2 WHACK(it, x̂
t)

for j ∈ [n] do

ẑj ← (1 + ϵ · Cij

λ ) · x̂j .
end for
Return ẑ

vector x := x̂/∥x̂∥1. This ensures that 1T · x = 1. The algorithm will run in
T = λln(n)/ϵ2 iterations, where 0 < ϵ < 1/2. If we let x̂t and xt reflect the
status of x̂ and x at the start of iteration t ∈ [T ], then before a given iteration
the algorithm will do one of the two following cases:

• Case (1): Observe that Cxt ≥ (1 − ϵ) · 1 and return (xt,NULL). In this
case, xt ∈ Rn

≥0 is an approximately feasible solution to the covering LP,

with objective 1Txt = 1.

• Case (2): A covering constraint it ∈ [m] with (Cxt)it is identified. The

constraint is then WHACK-ed into place by setting x̂← (1 + ϵ · Citj

λ ) · x̂j

for all j ∈ [n], returning an updated normalized vector x.

WHACK-ing a violated covering constraint makes progress towards making the
solution xt feasible for the covering LP. We let yt ∈ ∆m denote the indicator
vector for the covering constraint it ∈ [m] that gets whacked. After T iterations,
the algorithm returns (NULL, y), where y is the average of vectors y1, · · · , yT ,
and 1T y = 1. Per the following informal lemma and theorem, y is the approxi-
mately feasible solution to the dual packing LP. We will discuss the theoretical
analysis in details later in Section 3 and 4.

Lemma 1 Suppose that Algorithm 1 returns (NULL, y). Then CT y ≤ (1+4ϵ)·1.
Theorem 1 Algorithm 1 either returns an xt ∈ Rn

≥0 with 1Txt = 1 and Cxt ≥

4



(1− ϵ) · 1 or it returns a y ∈ Rm
≥0 with 1T y = 1 and CT y ≤ (1 + 4ϵ) · 1.

2.2 Small Scale Examples

To gain some intuition into both Theorem 1 and Algorithm 1, before we
analyze in later sections, we consider the following Example 1 of a very small
toy covering problem, where given a matrix

C =
[
0.8 0.1

]
, and let λ = 0.8, ϵ = 0.5 (2)

We are hoping to find x⃗ ∈ R2
≥0 that minimizes 1T x⃗ = x1 + x2 ≤ 1.5 subject to:

Cx =
[
0.8 0.1

] [x1

x2

]
≥ 0.5 (3)

The packing problem dual is then, to find y⃗ ∈ R1
≥0 that maximizes 1ty⃗ = y1 ≥

0.5 subject to:

CT y =

[
0.8y1
0.1y1

]
≤ 1.5 ·

[
1
1

]
(4)

Now, to find our x⃗ and y⃗ vectors, we will employ our Whack-a-Mole MWU
algorithm.

Initialization:

• We start with x̂1 = 1 = (1, 1). Thus, x1 → x̂1

∥x̂1∥1
= (1/2, 1/2).

• Now, we check feasibility for the covering constraints with x1:

(Cx1)1 = 0.8 · 1
2
+ 0.1 · 1

2
= 0.45 (5)

• With our ϵ = 0.5, clearly we have not satisfied the constraint

(Cx1)1 =
[
0.45

]
≱
[
0.5
]

(6)

So, we are clearly not feasible.

• So, we find a covering constraint such that (C ·x⃗1)i1 < 1. For our example,
we will consider row 1 as i1 and proceed to WHACK it.

WHACK-ing:

• For the chosen constraint i1 = 1, we update x̂ using Algorithm 2, our
WHACK algorithm, such that

x̂2 ← (1 + 0.1

[
0.8 0.1

]
0.8

) · 1 =

[
(1 + 0.5 · 0.80.8 ) · 1
(1 + 0.5 · 0.10.8 ) · 1

]
≈
[

1.5
1.0625

]
(7)

5



• Now, we normalize, such that

x2 ← x̂2

∥x̂2∥1
=
[

1.5
2.5625

1.0625
2.5625

]
≈ (0.585, 0.415) (8)

Recheck Constraints:

• We once again move through checking our constraints, i.e.

(Cx1)1 = 0.8 · 0.585 + 0.1 · 0.415 = 0.5095 (9)

• Now, 0.5095 > 0.5. So, our covering constraint is satisfied. In just one
iteration of WHACK-ing, we have found satisfaction of all constraints,
so we return x⃗ = (0.585, 0.415) as an approximate covering solution with
1Tx2 ≈ 1

This toy is clearly quite small-scale, and we easily satisfy the covering constraint
in 1 iteration. Let’s instead consider a more challenging (but similarly small)
problem where the covering constraint cannot be satisfied within the allotted
T iterations (and thus we find the dual packing LP) and highlights the width-
independent nature of this algorithm. Consider Example 2:

C =

[
1 0.5 1 0.3 0
0.2 1 0.7 0 1

]
, and let λ = 1, ϵ = 0.1 (10)

For the covering problem, we seek x⃗ = (x1, x2, x3, x4, x5) ∈ R5
≥0 that minimizes

x⃗ such that

1x1 + 0.5x2 + 1x3 + 0.3x4 + 0x5 ≥ 0.9

0.2x1 + 1x2 + 0.7x3 + 0x4 + 1x5 ≥ 0.9
(11)

The packing problem dual is to find y⃗ = (y1, y2) ∈ R2
≥0 that maximizes y⃗ such

that

CT y =


1 0.2
0.5 1
1 0.7
0.3 0
0 1

 ·
[
y1
y2

]
≤


0.9
0.9
0.9
0.9
0.9

 (12)

As we increase the number of variables (columns), we see that the problem gets
“wider”, but the MWU-style algorithm described under Algorithm 1 scales ef-
fectively with additional dimensionality. In later sections, we will show that the
complexity grows only as λln(n)/ϵ2 and the approximation guarantees remain
the same: the algorithm will either find a near-feasible covering solution or a
near-feasible packing solution.

6



We initialize with x⃗ = (1/5, 1/5, 1/5, 1/5, 1/5) following the process demon-
strated in example 1, and we check coverage, i.e.

1 · 0.2 + 0.5 · 0.2 + 1 · 0.2 + 0.3 · 0.2 + 0 · 0.2 = 0.56 ≱ 0.9

0.2 · 0.2 + 1 · 0.2 + 0.7 · 0.2 + 0 · 0.2 + 1 · 0.2 = 0.58 ≱ 0.9
(13)

So, our constraints are not satisfied. So, we set off to WHACK our constraints

x̂← (1 + 0.1
[
1 0.5 1 0.3 0

]
) · 1

x̂← (1.1, 1.05, 1.1, 1.03, 1)

x =
x̂

5.28
≈ (0.2083, 0.1989, 0.2093, 0.1951, 0.1894)

(14)

Now, when we recheck our constraints,

1 · 0.2083 + 0.5 · 0.1989 + 1 · 0.2093 + 0.3 · 0.1951 + 0 · 0.1894 = 0.57558 ≱ 0.9

0.2 · 0.2083 + 1 · 0.1989 + 0.7 · 0.2093 + 0 · 0.1951 + 1 · 0.1894 = 0.57647 ≱ 0.9

(15)

We have moved constraint 1 slightly towards our goal of 0.9, while moving
constraint 2 slightly further away from our given goal. While progress is made,
this problem does not converge within T iterations, and instead returns to us
the dual y⃗ = (0.4906, 0.5093), satisfying the packing dual

CT y =


1 0.2
0.5 1
1 0.7
0.3 0
0 1

 ·
[
0.4906
0.5093

]
≈


0.5925
0.7546
0.8471
0.14718
0.6093

 ≤

0.9
0.9
0.9
0.9
0.9

 (16)

For more formal details on the theoretic guarantees for template, see Section
3 on Theoretic Analysis. For more details on the width-independent running
time, see Section 4.

2.3 Near Linear Time Implementation

We conclude this section by highlighting that this algorithm can be run in near-
linear time. To accomplish this, the whack-a-mole MWU algorithm is split into
phases, allowing us to only consider each constraint at most once, whacking it
repeatedly on a single run until satisfied. Consider the following reformulation
in Algorithm 3.

In each phase, weights are set as W ← ∥x̂t∥1 and remain constant throughout

the iteration. Since ∥x̂t∥1 ≤ (1 − ϵ/2)−1, x̂t

W remains a good estimation for

xt := x̂t

∥x̂t∥1
. Now, using this new near linear time implementation, we scan

7



through all covering constraints in a single phase. If a constraint is violated,
we apply the ENFORCE algorithm which calls as a subroutine STEP-SIZE.
Together, these algorithms figure out how many times the algorithm needs to
be WHACK-ed, and does so until the constraint is satisfied, otherwise the dual
is provided.

Algorithm 3 Linear Time Implementation

x̂1 ← 1, t← 1, and T ← λln(n)/ϵ2.
for t = 1 to T do

“Start” : W ← ∥x̂∥1.
for i ∈ [m] do

if (C · x̂
t

W )i < 1− ϵ/2, then
δ ← ENFORCE(i, t, x̂t,W ).
t← t+ δ
if t = T , then

Return (NULL, y), where y := (1/T ) ·
∑T

t′=1 y
t′ .

Terminate the loop.
end if
if ∥x̂t∥1 > (1− ϵ/2)−1 ·W , then

Go to “Start”. (Initiate a new phase).
end if

end if
end for
Terminate the Loop and Return (xt,NULL), where xt := x̂t

∥x̂t∥1

end for

Algorithm 4 ENFORCE(i, t, x̂t,W )

δ ← STEP-SIZE(i, t, x̂t,W ).
for t′ = t to (t+ δ − 1), do

x̂t′+1 ←WHACK(i, x̂t′)
i′t ← i
Let yt

′ ∈ ∆m be the vector where (yt
′
)i = 1.

Let (yt
′
)i′ = 0 for all i′ ∈ [m]\{i}.

end for
Return δ

At the end of the full scan, W still accurately estimates the weight ∥x̂t∥1 and
t < T , then we get back the primal covering LP. In Section 3, we will analyze
and guarantee that the template provided in Section 2.1 matches the newly
defined near-linear time implementation within this section.

8



Algorithm 5 STEP-SIZE(i, t, x̂t,W )

for Every integer k ≥ 1 do
Let zk ∈ Rn

≥0 be such that (zk)j = (1 + ϵ · Cij

λ )k · (x̂t)j for j ∈ [n].
end for
if (C · z

T−t

W )i < 1, then
δ ← T − t

else
Use binary search, compute the smallest integer δ ∈ [T − t] s.t. (C · z

δ

W )i ≥
1.
end if
Return δ

3 Theoretic Analysis in a Black-Box Manner

In this section, we establish a theoretical guarantee for the Algorithm 3 by
presenting a reformulation that realizes the algorithm as an adversarial ban-
dit problem with MWU policy updates. This reformulation elegantly bridges
the dual optimality of the packing-covering LP with the optimal policy in the
adversarial bandit learning scenario.

3.1 Reformulation as an Adversarial Bandit

We show that the template algorithm (Algorithm 1) can be realized by running
the MWU algorithm as an adversarial bandit, enabling a black-box application
of bounds on MWU algorithm.

Adversarial Bandit. We start by recalling the adversarial bandit setting seen
in [6, Chapter 11]. Let n > 1 be the number of arms. An n-armed adversarial
bandit is a sequence of reward vectors {rt}Tt=1, where r

t ∈ [0, 1]n. In each round
t, the agent selects a probability distribution Pt over the [n] actions. Subse-
quently, action At ∈ [n] is drawn from Pt, and the agent receives reward rtAt

.
The environment then reveals the reward vector rt.

A policy, in this context, is the function π : ([n] × [0, 1])∗ → Pn−1 that maps
the history of past actions and rewards to a probability distributions over n
actions. The performance of a policy π in environment x is evaluated based on
the expected regret, defined as the expected loss of the policy relative to the
best fixed action in hindsight. The MWU updates the policy as

πt+1(j)← (1 + ϵrtj)πt(j),∀j ∈ [n]

πt+1 ←
πt+1

∥πt+1∥
.

where ϵ is a small positive parameter. It is known that MWU policy-update is
near-optimal against the best fixed action in hindsight [6].

9



Proposition 1 (Regret bound of the MWU algorithm). Consider an agent
following policy πt at the t-th round for each t, then we have

T∑
t=1

EAt∼πt
[rtAt

] ≥ (1− ϵ)max
j∈[n]

T∑
t=1

rtj −
log n

ϵ
.

Reformulation. The template (Algorithm 1) can be reformulated as playing
an adversarial bandit following the MWU update:

• At the t-th round, the agent selects an action j ∈ [n] following the policy
xt

∥xt∥1
.

• The agent then gets the reward 1
λCit,j .

• The environment reveals the reward function and the agent updates the
policy following (17).

One can check that this formulation is corresponded to setting rt := 1
λCit where

Cit is the it-th row, it ∈ [m] of the matrix C and λ is the maximum entry of
C. It is also clear that rt ∈ [0, 1]n. The whacking and normalization steps
corresponds to the aforementioned MWU update in (17).

Optimality. Our formulation connects the optimal policy in the bandit scenario
with the optimality in Packing LP. For any t ≥ 0, the definition of yt shows
that the entry Cit,j becomes (CT yt)j for any j. The total reward of the best
fixed action in hindsight becomes

max
j∈[n]

1

Tλ

T∑
t=1

(CT yt)j =
1

λ

∥∥CT y
∥∥
∞ , (17)

where y = 1
T ·
∑T

t=1 y
t (the output of Algorithm 3 at the T -th round).

3.2 Theoretical Guarantees for the Template Algorithm

Theorem 3.1 (Theoretic guarantee for Algorithm 1). The output of the tem-
plate (Algorithm 1) is an approximate solution to the packing LP.

Proof. With the formulation from Section 3.1, we can apply the bound for MWU
(Proposition 1) in a blackbox manner. Directly applying Proposition 1 and
(17) shows that

1

T

T∑
t=1

n∑
j=1

1

λ
Cit,jx

t
j ≥

1− ϵ

λ

∥∥CT y
∥∥
∞ −

log n

ϵT
=

1− ϵ

λ

∥∥CT y
∥∥
∞ −

ϵ

λ
. (18)

10



Since the it-th constraint is necessarily (C ·xt) < 1− ϵ, otherwise the algorithm
would conclude if (C · xt)i ≥ 1− ϵ before the t-th step, we have

n∑
j=1

Cit,jx
t
j = (Cxt)it ≤ 1,

for any t. Combining this with (18) shows that CT y ≤ ϵ/(1 − ϵ)1 ≤ 2ϵ1, for
small enough ϵ. Meanwhile, the definition of y automatically ensures that 1T y =
1. These together verify that the output y of Algorithm 1 is an approximate
solution to the packing LP defined in Definition 1.

3.3 Theoretic Guarantee for Algorithm 3

Moving forward, we refer to each call to the WHACK-ing algorithm as a round
and each update W as the end of a phase. We begin with Lemma 3.1, verifying
that Algorithm 3 implements the basic template, (Algorithm 1).

Lemma 3.1. Algorithm 3 implements the template (Algorithm 1).

Proof. We show that for a given phase of the ENFORCE protocol, the enforc-
ing of a given constraint i ∈ [m] in rounds t′ ∈ [t, t + δ − 1] is consistent with
the WHACK-ing of the template (Algorithm 1). More precisely, for a con-
straint i ∈ [m] that is enforced at the start of a round t ∈ [T ] in the protocol
ENFORCE (i, t, x̂t,W ), the WHACK-ing Algorithm 3 shows that(

C · x̂
t′

W

)
i

< 1 for all t ≤ t′ ≤ t+ δ − 1. (19)

Since W can only increase with time, it follows that
∥∥∥x̂t′

∥∥∥
1
≥ W for all t′ ≥ t.

This implies that (
C · xt′

)
i
< 1 for all t ≤ t′ ≤ t+ δ − 1 (20)

where xt′ := x̂t′

∥x̂t′∥
1

. In other words, WHACK-ing the i-th constraint for round

[t, t+ δ − 1] is consistent with basic template (Algorithm 1).

Lemma 3.1 establishes that if Algorithm 3 ends at time T and returns the vector
y, then y is an approximate solution to the covering LP outlined in Section 1.
If Algorithm 3 returns the vector x, the following result ensures that x is an
approximate solution to the packing LP.

Lemma 3.2. If Algorithm 3 returns an x, then it is is an approximate solution
to the packing LP.

Proof sketch. Consider the last phase starts with (x′,W ′) that ends with
(x,W ). The stopping condition implies that W is close to W ′. Meanwhile,
the ENFORCE protocol ensures that x

W ′ satisfies the constraint CT x
W ′ ≥ 1.

Together, this leads to x
W approximately satisfies the constraint. See Appendix

A for a complete proof.

11



4 Width-independent Running Time

In this section, we establish a log-width running time for Algorithm 3 and
explain the underlying rationale. By cleverly incorporating the well-known Bi-
nary Exponentiation method, we are able to reduce the computational load and
achieve a more efficient implementation. Our main result is as follows:

Theorem 4.1 (Running time for Algorithm 3). Algorithm 3 can be implemented

in O
(
N logn

ϵ2 (log λn
ϵ )2

)
. The width λ is the maximum entry of the matrix C and

N is the number of nonzero elements in the matrix C.

4.1 Implementation based on Binary Exponentiation

The key to achieving a log-width running time is the following well-known result
on computing the exponentiation.

Proposition 2 (Binary Exponentiation). For a fixed real number x, there exists
a O (log n)-time algorithm that computes xn.

Compared with the primitive algorithm that multiplies x by n times and has
the running time as O (n), the Binary Exponentiation algorithm is faster, with
a O (log n) running time. We now explain how the Binary Exponentiation help
us reach a width-independent running time.

Example 1. Consider a toy example that the algorithm ends after 4 phases
with the outputs as (x1, x2, x3, x4), and each phase consist of consecutively
whacking the first constraint for λ times. Thus, for the i-phase for any i ∈ [4],
instead of computing

(1 +
ϵ

λ
C1,j)

kxi
j , for k = 1 ∼ λ, j = 1 ∼ n,

which takes O (mλ)− time, we would only need to compute

(1 +
ϵ

λ
C1,j)

λxi
j , j = 1 ∼ n.

Applying the Binary Exponentiation algorithm (Proposition 2) for each phase
yields the running time of O (m log λ).

Example 1 shows that by integrating multiple rounds into a phase, we can apply
Binary Exponentiation algorithm to each phase to reduce the computational
load. This intuition is formalized as follows.

Lemma 4.1 (Total number of phases). There are no greater than O
(
log n/ϵ2

)
many phases in Algorithm 3.

Proof Sketch. Note that we restart a new phase only when ∥x∥1 increases by
a factor of (1−ϵ/2)−1. Meanwhile, for each round, the ∥x∥1 increase by a factor
of (no greater than) (1 + ϵ/λ). Since there are T rounds in total, the number
of phases is bounded by log(1−ϵ/2)−1(1 + ϵ/λ)T = O

(
log n/ϵ2

)
. See Appendix

A for a detailed proof.

12



Lemma 4.2 (Computational time for each phases). For any phase and any i ∈
[m], it take no greater than O

(
Ni(log T )

2
)
-times to enforce the i-th constraint

in this phase. Here Ni is the number of non-zero entries in row i of the matrix
C.

Proof. The binary search for δ ∈ [0, T ] can be done in log T -times. To implement
WHACK-ing the i-th constraint δ times, we only need to compute (1+Cij/λ)

δxj

for each j. This can be done in Ni log T times using the Binary Exponentiation.

Theorem 4.1 directly follows from Lemma 4.1 and 4.2.

5 Conclusion and Discussion

This note studies the packing-covering LP solver by [4]. We discuss the connec-
tion between the LP solver and MWU policy update in an adversarial bandit
learning scenario, which enables a black-box-type theoretic guarantee. We also
describe the algorithm’s width-independent running time and explain the un-
derlying rationale.

Extension to the Dynamic Update. Algorithm 3 above can be seamlessly
extended to the dynamic setting where the matrix C undergoes a sequence of
restricting updates. Here each restricting update decreases some entries of the
matrix C. The theoretical guarantee for the accuracy and running time is similar
to that of the static setting. We refer the readers to [4] for more details.

References

[1] Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update
method: a meta-algorithm and applications. Theory of computing, 8(1):121–
164.

[2] Azar, Y., Buchbinder, N., Chan, T. H., Chen, S., Cohen, I. R., Gupta, A.,
Huang, Z., Kang, N., Nagarajan, V., Naor, J., et al. (2016). Online algorithms
for covering and packing problems with convex objectives. In 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 148–
157. IEEE.

[3] Balas, E. (1982). Tutorial paper x: A class of location, distribution and
scheduling problems: modelling and solution methods. JORBEL-Belgian
Journal of Operations Research, Statistics, and Computer Science, 22(2):36–
69.

[4] Bhattacharya, S., Kiss, P., and Saranurak, T. (2023). Dynamic algorithms
for packing-covering lps via multiplicative weight updates. In Proceedings of
the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1–47. SIAM.

13



[5] Chekuri, C. and Quanrud, K. (2018). Randomized mwu for positive lps. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 358–377. SIAM.

[6] Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge
University Press.

[7] Plotkin, S. A., Shmoys, D. B., and Tardos, É. (1995). Fast approximation
algorithms for fractional packing and covering problems. Mathematics of
Operations Research, 20(2):257–301.

[8] Quanrud, K. (2020). Nearly linear time approximations for mixed packing
and covering problems without data structures or randomization. In Sympo-
sium on Simplicity in Algorithms, pages 69–80. SIAM.

A Detailed Proof

A.1 Proof for Lemma 4.1

Proof. Consider any round t ∈ [T ] in ENFORCE(i, t, x̂t,W ) we have

∥∥x̂t+1
∥∥
1
−
∥∥x̂t
∥∥
1
=
∑
j∈[n]

((
x̂t+1

)
j
−
(
x̂t
)
j

)
=
∑
j∈[n]

(
x̂t
)
j
·
(
ϵ · Cit,j

λ

)
.

since (Cxt)it < 1 for xt := x̂t/ ∥x̂t∥1, the increment can be further bounded by∥∥x̂t+1
∥∥
1
−
∥∥x̂t
∥∥
1
≤ ϵ

λ
·
(
Cx̂t

)
it
<

ϵ

λ
·
∥∥x̂t
∥∥
1
.

Since there are T rounds in total and
∥∥x̂0
∥∥
1
= n, the L1 norm can be bounded

as ∥x̂t∥1 ≤
(
1 + ϵ

λ

)T · ∥∥x̂0
∥∥
1
≤ n(1/ϵ) for all t ∈ [T ].

Meanwhile, we start a new phase only when ∥x̂t∥ increases by a multiplicative
factor of (1−ϵ/2)−1. Thus, previous discussion shows that the number of phases

is at most O
(
log(1−ϵ/2)−1 n(1/ϵ)

)
= O

(
logn
ϵ2

)
.

A.2 Proof for Lemma 3.2

Proof. We consider the very last phase, which spans from round t′ to round t′′,
where t′ < t′′. Let W be the value of ∥x̂t∥1 at the start of this phase. Fix any
constraint i ∈ [m], chosen at the start of round ti ∈ [t′, t′′]. Now, there are two
possible cases.

Case I: The constraint i did not get enforced in this phase. This happens if(
C · x̂

ti

W

)
i
≥ 1 − ϵ/2. Here, we derive that

(
C · x̂

t′′

W

)
i
≥
(
C · x̂

ti

W

)
i
≥ 1 − ϵ/2,

since each co-ordinate of x̂ can only increase over time.

14



Case II: The constraint i got enforced in this phase, by getting repeatedly
whacked δ times starting from round ti. Thus, we have ti + δ < T (otherwise,

the algorithm would return a dual packing solution y ) and
(
C · x̂

ti+δ

W

)
i
≥ 1.

Analogous to Case I, here we derive that
(
C · x̂

t′′

W

)
i
≥
(
C · x̂

ti+δ

W

)
i
≥ 1 ≥

1− ϵ/2.
To summarize, we have the following guarantee for every constraint i ∈ [m] at
the start of round t′′. (

C · x̂
t′′

W

)
i

≥ 1− ϵ/2

Since no new phase was initiated before round t′′ , we infer that
∥∥∥x̂t′′

∥∥∥
1
≤

(1 − ϵ/2)−1 · W . Thus we get the following guarantee for every constraint
i ∈ [m].

(
C · xt′′

)
i
≥

(
C · x̂

t′′

W

)
i

· (1− ϵ/2) ≥ (1− ϵ/2)2 ≥ 1− ϵ, where xt′′ :=
x̂t′′

∥x̂t′′∥1

In other words, the vector xt′′ satisfies the inequality C · xt′′ ≥ (1 − ϵ) · 1, and
hence the decision to return (xt′′ ,NULL).

B Reduction to General LPs

Consider a general packing and covering linear programs (LPs) defined as fol-
lows:

Covering LP: minx∈Rn
≥0

{
c⊤x | Ax ≥ b

}
,

Packing LP: maxy∈Rm
≥0

{
b⊤y | A⊤y ≤ c

}
.

Here each entry of the matrix coefficients A ∈ Rm×n
≥0 , b ∈ Rm

≥0, c ∈ Rn
≥0 is non-

negative. We will now explain how to use Algorithm 3 to obtain ϵ-approximate
optimal solution to this pair of LPs in the static setting.

Proposition 3. There is a deterministic ϵ-approximation algorithm for solving
LP that runs in Õ

(
N log3(nU/L

)
)ϵ−3 time. Here N denotes the number of

non-zero entries in the matrix C, and (L,U) respectively denotes a lower (resp.
upper) bound on the minimum (resp. maximum) value of any non-zero entry in
the coefficients C, a, b.

Proof. We construct a matrix C ′ ∈ [L/U2, U/L2]m×n by C ′
ij := Cij/ (ajbi) for

all i ∈ [m], j ∈ [n]. Note that the matrix C ′ can be computed in O(N) time. It
is clear that the Packing-Covering LP can be rewritten using C ′ as follows:

Min 1⊤x such that C ′x ≥ 1 and x ∈ Rn
≥0

Max 1⊤y such that (C ′)
⊤
y ≤ 1 and y ∈ Rm

≥0

(21)

15



Note that the optimal objective value of the LP defined by C ′ falls in the range
of [L2/U, nU2/L]. To apply Algorithm 3, we consider the set

I := {(1 + ϵ)i : for all i such that (1 + ϵ)i ∈ [L2/U, nU2/L]}

and consider the following problem for each µ ∈ I.

Problem 1. Either return an x ∈ Rn
≥0 such that 1⊤x ≤ (1 + Θ(ϵ)) · µ and

C ′x ≥ (1 − Θ(ϵ)) · 1, or return a y ∈ Rm
≥0 such that 1⊤y ≥ (1 − Θ(ϵ)) · µ and

(C ′)
⊤
y ≤ (1 + Θ(ϵ)) · 1.

Section 4.1 show that we can solve Problem 1 for each µ using Algorithm 3 in

O
(
N · log(n)ϵ2 · log2

(
nU log(n)

ϵL

))
time. One can easily check that we can solve

the original packing-covering LP if we solve Problem 1 for each µ ∈ I. This
concludes the proof.

16


